
RolemBased Access 
Control Models 
Ravi S. Sandhu 
George Mason University and 
SETA Corporation 

Edward J. Cope 
Hal L. Feinstein 
Charles E. Youman 
SETA Corporation 

Security administration of 

large systems is complex, but 

it can be simplified by a role- 

based access control approach. 

A family of increasingly 

sophisticated models shows 

how RBAC works. 

Computer 

tarting in the 1970s, computer systems featured multiple applic 
tions and served multiple users, leading to heightened awareness S of data security issues. System administrators and software devel- 

opers alike focused on different kinds of access control to ensure that only 
authorized users were given access to certain data or resources. One kind 
of access control that emerged is role-based access control (RBAC). 

A role is chiefly a semantic construct forming the basis of access con- 
trol policy. With RBAC, system administrators create roles according to 
the job functions performed in a company or organization, grant permis- 
sions (access authorization) to those roles, and then assign users to t 
roles on the basis of their specific job responsibilities and qualificati 
(see sidebar “Role-based access control terms and concepts”). 

A role can represent specific task competency, such as that of a physician 
or a pharmacist. A role can embody the authority and responsibility of, 
say, a project supervisor. Authority and responsibility are distinct from 
competency. Aperson may be competent to manage several departments 

Roles define both the specific individuals allowed to access resources 
and the extent to which resources are accessed. For example, an opera- 
tor role might access all computer resources but not change access per- 
missions; a security-officer role might change permissions but have no 
access to resources; and an auditor role might access only audit trails. 
Roles are used for system administration in such network operating sys- 
tems as Novell’s NetWare and Microsoft’s Windows NT. 

The particular combination of users and permissions brought together 
by a role tend to change over time. The permissions associated with a role, 
on the other hand, are more stable; they tend to change less often than 
the people who fill the job function that role represents. Therefore, bas- 
ing security administration on roles rather than on permissions is simpler. 
Users can be easilyreassigned to different roles as needs change. Similarly, 
as a company acquires new applications and systems, roles can have new 
permissions granted and existing permissions revoked. 

This article explains why RBAC is receiving 
method of security administration and review, d 
four reference models we have developed to better understand RBAC and 
categorize different implementations, and discusses the use of RBAC to 
manage itself. Our framework separates the administration of RBAC from 
its access control functions. 

NEEDS ADDRESSED BY ROLES 
Arecent study of 28 organizations by the National Institute of Standards 

and Technology1 (NIST) demonstrates that RBAC addresses many differ- 
ent needs in the commercial and government sectors. Access control 
requirements were found to be determined by a need for customer, stock- 
holder, and insurer confidence; personal information privacy; prevention 
of unauthorized financial asset distribution and unauthorized long-dis- 

0018 9162/96/$5 00 D 1996 IEEE 



tance telephone calls; and adherence to professional stan- 
dards. Moreover, the study found that many organizations 

based access control decisions on “the roles that indi- 
vidual users take on as part of the organization”; 
preferred to centrally control and maintain access 
rights that reflect the organization’s protection guide- 
lines; and 
viewed their access control needs as unique, believ- 
ing that commercially available products lacked ade- 
quate flexibility. 

RBAC is attracting strong interest in the standards 
arena. Roles are being considered as part of the emerging 
SQL3 standard for database management systems on the 
basis of the implementation of roles inversion 7 of Oracle. 
Roles have also been incorporated in the commercial secu- 
rity profile of the “common criteria” draft.2 RBAC is also 
in tune with prevailing technology and business trends. 
Numerous software products, for example, directly sup- 
port some form of RBAC, and others support closely 
related concepts, such as user groups, through which roles 
can be implemented. 

REASONS TO USE RBAC 
Renewed interest in RBAC has focused on general sup- 

port at the application level. Traditionally, specific appli- 
cations have had to encode RBAC internally, with existing 
operating systems and environments offering little appli- 
cation-level MAC support. This is beginning to change; 
however, the challenge is to identify sufficiently flexible 
yet easy-to-use application-independent facilities to sup- 
port many applications with minimal customization. 

Although RBAC‘s usefulness is widely acknowledged, 
there is little agreement on what RBAC means. As a result, 
RBAC is open to interpretation by researchers and system 
developers. Sophisticated variations of RBAC include the 

capability to establish relations between roles, between 
permissions and roles, and between users and roles. For 
example, two roles can be established as mutually exclu- 
sive-the same user is not allowed to assume both. Roles 
can also acquire inheritance relations, whereby one role 
inherits permissions assigned to a different role. These 
role-role relations can enforce security policies, including 
separation of duties and delegation of authority. Pre- 
viously, these relations would have required application- 
software encoding; with RBAC, they can be specified once 
for a security domain. 

With RBAC, role-permission relationships can be pre- 
defined, which makes it simple to assign users to the pre- 
defined roles. The NIST study] indicates that permissions 
assigned to roles, unlike user membership in roles, tend 
to change relatively slowly. The study also found it desir- 
able to let administrators confer and revoke user mem- 
bership in existing roles without authorizing these 
administrators to create new roles or change role-permis- 
sion assignments. One reason for this finding is that assign- 
ing users to roles typically requires less technical skill than 
assigning permissions to roles. Without RBAC, it can also 
be difficult to determine what permissions have been 
authorized for what users. 

Access control policy is embodied in RBAC components 
such as role-permission, user-role, and role-role relation- 
ships. These components collectively determine whether 
a particular user is allowed access to a certain piece of sys- 
tem data. RBAC components can be configured directly by 
the system administrator or indirectly by appropriate roles 
as delegated by the system administrator. The policy 
enforced in a given system results from the specific con- 
figuration of RBAC components as directed by the system 
administrator. Because the access control policy can, and 
usually does, change over the system life cycle, RBAC 
offers a key benefit through its ability to modify access con- 
trol to meet changing organizational needs. 

I m  February 1996 



Although the RBAC concept is policy neutral, it directly 
supports three well-known securiry principles: 

0 Least privilege: Only those permissions required for 
the tasks performed by the user in the role are 
assigned to the role. 

* Separation ofduties: Invocation of mutually exclusive 
roles can be required to complete a sensitive task, 
such as requiring an accounting clerk and an account 
manager to participate in issuing a check. 

* Data abstraction: Instead of the read, write, execute 
permissions typically provided by the operating sys- 
tem, abstract permissions, such as credit and debit 
for an account object, can be established. 

Two caveats: RBAC cannot enforce the way these prin- 
ciples are applied. Theoretically, a system administrator 
could configure RBAC to violate these principles. Also, the 
degree to which data abstraction is supported will be 
determined by the implementation details. 

RBAC is not a panacea for all access control issues. More 
sophisticated methods are required to deal with situations 
that control operation sequences. For example, where a 
purchase requisition requires various steps before the pur- 
chase order can be issued, RBAC does not attempt to 
directly control the permissions for such an event 
sequence. Other forms of access control can be layered on 
top of RBAC for this purpose. (See Mohammed and Dilts3 
and Thomas and S a n d h ~ . ~ )  We regard operation sequence 
control to be outside the scope of RBAC, although RBAC 
can be a foundation on which to build such controls. 

ROLES AND RELATED CONCEPTS 
Many access control systems commonly provide groups 

of users as the access control unit. A major difference 
between groups and roles is that groups are typically 
treated as a collection of users but not as a collection of 
permissions. A role, serving as an intermediary, is both a 
collection of users and a collection of permissions. 

In Unix, because group membership is defined in two 
files (/etc/passwd and/etc/group), it is easyto determine 
the users belonging to a particular group. Permissions are 
granted to groups on the basis of permission bits associ- 
ated with individual files and directories. Determining the 
permissions granted to a particular group generally 
requires a traversal of the entire file system tree. It is eas- 
ier, therefore, to determine a group’s membership than its 
permissions. Moreover, the assignment of permissions to 
groups is highly decentralized. Essentially, the owner of 
any Unix file system subtree can assign permissions for 
that subtree to a group. Although Unix groups are differ- 
ent from our concept of roles, in certain situations Unix 
groups can implement roles. 

Groups versus roles 
To illustrate the qualitative nature of the group-versus- 

role distinction, let’s consider a hypothetical system in 
which it takes twice as long to determine group member- 
ship as to determine group permissions. Let’s assume that 
group permissions and membership can be changed only 
by the system administrator. In this example, the group 
mechanism closely resembles our role concept. 

Our example suggests that (1) it should be roughlyas easy 
to determine role membership as role permissions, and (2) 
control of role membership and role permissions should be 
relatively centralized in a few users. Many mechanisms claim- 
ing to be role based have neither of these characteristics. 

Roles and compartments 
A question we’re frequently asked concerns the relation- 

ship of roles to compartments. Compartments are part of 
the security label structure used in the classified defense 
and government sectors5 and are based on the ‘(need to 
know,” which has a semantic connotation regarding the 
information available under a compartment label analo- 
gous to the semantic connotation of role. This idea essen- 
tially underlies the apparent similarity of compartments 
and roles. However, compartments are used for the specific 
policy of one-directional information flow in a lattice of 
labels, whereas roles are not confined to any single policy. 

Discretionary and mandatory access 
A long-standing distinction between discretionary and 

mandatoryaccess controls, respectively known as DAC and 
MAC, emerged from defense security research. MAC con- 
trols access on the basis of security labels attached to users 
(more precisely, subjects) and obje~ts .~ DAC controls access 
to an object on the basis of an individual user’s permissions 
and/or denials. Typically, the object’s owner is another user, 
who establishes the permissions and/or denials. RBAC is 
an independent component of access control, coexisting 
with MAC and DAC when appropriate. In such a case, access 
is allowed only if permitted by RBAC, MAC, and DAC. In 
other cases, we expect that RBAC will exist by itself. 

Arelated issue is whether RBAC itself is a discretionary 
or a mandatorymechanism. The answer depends on how 
the terms are defined and on the nature and configuration 
of permissions, roles, and users in an RBAC system. Our 
understanding of mandatory means that individual users 
have no choice regarding which permissions or users are 
assigned to a role. Discretionary signifies that individual 
users make these decisions. Recall that by itself, RBAC is 
policy neutral; however, individual RBAC configurations 
can support a mandatory policy, while others can support 
a discretionary policy. 

A FAMILY OF REFERENCE MODELS 
To explore RBAC’s various dimensions, we have defined 

a family of four conceptual models. Figure l a  shows the 
model relationships and Figure l b  portrays their essential 
characteristics. RBAC,,, as the base model at the bottom, 
is the minimum requirement for an RBAC system. 
Advanced models RBAC, and RBAC, include RBAC,, but 
RBAC, adds role hierarchies (situations where roles can 
inherit permissions from other roles), whereas RBAC, adds 
constraints (which impose restrictions on acceptable con- 
figurations of the different components of RBAC). RBAC, 
and RBAC, are incomparable to one another. The consol- 
idated model, RBAC,, includes RBAC, and RBAC, and, by 
transitivity, RBAC,. 

Researchers and developers can compare their systems 
and models with our reference models. The four models 
can also serve to guide product development and customer 
evaluation. 

Computer 



Figure 1. A family of role-based access control models. RBAC,, as the base model at the bottom, is  the mini- 
mum requirement for an RBAC system. Advanced models RBAC, and RBAC, include RBAC,, but RBAC, adds 
role hierarchies, whereas RBAC, adds constraints. The consolidated model, RBAC,, includes RBAC, and 
RBAC, and, by transitivity, RBAC,. 

For the following discussion of the models, we assume 
that a single system administrator is the only one autho- 
rized to configure the various sets and relations of the 
models. A more sophisticated management model is dis- 
cussed later. 

Base model-RBAC, 
In Figure lb,  the base model RBAC, consists of every- 

thing except role hierarchies and constraints. Four enti- 
ties are shown: users (U), roles (R), permissions (P), and 
sessions (S). 

USEM AND ROLES. For simplicity in our model, user is 
a human being. A role is a named job function within the 
organization that describes the authority and responsi- 
bility conferred on a member of the role. 

PERMISSIONS. Apermission is an approval of a partic- 
ular mode of access to one or more objects in the system. 
The terms authorization, access right, and privilege are also 
used in the literature to denote a permission. Permissions 
are always positive and confer on their holder the ability 
to perform an action in the system. Objects are data objects 
or resource objects represented by data in the computer 
system. Our conceptual model accommodates many inter- 
pretations for permissions, from those where access is per- 
mitted to an entire subnetwork, to those where the unit of 
access is a particular field of a particular record. Some 
access control literature discusses negative permissions, 
which deny rather than confer access. However, we con- 
sider access denial to be a constraint rather than a nega- 
tive permission. 

The nature of a permission depends largely on system 
type and implementation; thus, a general access-control 
model must treat permissions somewhat as uninterpreted 
symbols. Because each system type protects objects of the 
abstraction it implements, an operating system, for exam- 
ple, protects files, directories, devices, and ports through 

operations such as read, write, and execute. A relational 
database management system protects relations, tuples, 
attributes, and views through operations such as select, 
update, delete, and insert. An accounting application pro- 
tects accounts and ledgers through operations such as 
debit, credit, transfer, create account, and delete account. 

Permissions can apply to single objects or to many, and 
they can be as specific as read access to a particular file or 
as generic as read access to all files belonging to a partic- 
ular department. The manner in which individual per- 
missions are joined into a generic permission so that they 
can be assigned as a single unit is highly implementation 
dependent. 

Figure l b  shows user assignment (UA) and permission 
assignment (PA) relations; both are many-to-many and 
both are key to RBAC. A user can belong to many roles, 
and a role can have many users. Similarly, a role can have 
many permissions, and the same permission can be 
assigned to many roles. Ultimately, the user exercises per- 
missions. The role’s position as an intermediary to let a 
user exercise a permission provides greater control over 
access configuration and review than does a direct rela- 
tionship between users and permissions. 

SESSIONS. Users establish sessions during which they 
may activate a subset of the roles they belong to. Each ses- 
sion maps one user to possibly many roles. The double- 
headed arrow from the session to R in Figure l b  indicates 
that multiple roles are simultaneously activated. The per- 
missions available to the user are the union of permissions 
from all roles activated in that session. Each session is asso- 
ciated with a single user, as indicated by the single-headed 
arrow from the session to U in Figure lb .  This association 
remains constant for a session’s duration. The concept of 
a session equates to the traditional notion of subject in the 
access control literature. 

A user might have multiple sessions open simultane- 
ously, each in a different window on a workstation screen. 

February 1996 



trative permissions and are discussed in the section on 
issues in role administration. 

Sessions are under the control of individual users. As 
far as the model is concerned, a user can create a session 
and choose to activate some subset of the user’s roles. 
Roles active in a session can be changed at the user’s dis- 
cretion. The session terminates at the user’s initiative. 
(Some systems will terminate a session if it is active for too 
long. Strictly speaking, this is a constraint and properly 
belongs in RBAC,.) 

Some authors6 consider duties, in addition to permis- 
sions, to be an attribute of roles. A duty is a user’s obliga- 
tion to perform one or more tasks that are generally 
essential for an organization to function smoothly. In our 
view, duties are an advanced concept that does not belong 
in RBACp We feel that incorporation of duties in access con- 
trol models requires further research and at present is not 
incorporated in our advanced models. One approach might 
treat duties as it does permissions. Another approach to 
incorporating duties would have as its basis new access con- 
trol paradigms such as task-based auth~rization.~ 

R o l e  hierarchies-RBAC, 
The next model in our framework, RBAC,, introduces 

roIe hierarchies (RH), as indicated in Figure 1. Role hier- 
archies are invariably discussed along with roles in the lit- 
erature7 lo and are commonly implemented in systems that 
provide roles. 

Hierarchies are a natural means for structuring roles to 
reflect an organization’s lines of authority and responsi- 
bility (see Figure 2). By convention, more powerful 
(senior) roles are shown toward the top of these diagrams 
and less powerful (junior) roles toward the bottom. 

In Figure 2a, the junior-most role is that of health-care 
provider. The physician role is senior to health-care 
provider and thereby inherits all permissions from health- 
care provider. The physician role can have permissions 
besides those it inherited. Permission inheritance is tran- 
sitive, so in Figure 2a, for example, the primary-care physi- 
cian role inherits permissions from both the physician and 
health-care-provider roles. Primary-care physician and 
specialist physician both inherit permissions from the 
physician role, but each will have different permissions 
directly assigned to it. Figure 2b illustrates multiple inher- 
itance of permissions, where the project supervisor role 
inherits from both test engineer and programmer roles. 

Mathematically, these hierarchies are partial orders. A 
partial order is a reflexive, transitive, and antisymmetric 
relation. Inheritance is reflexive because a role inherits its 
own permissions, transitivity is a natural requirement in 
this context, and antisymmetryrules out roles that inherit 
from one another and would therefore be redundant. 

The formal definition of MAC, follows. 

Figure 2. Examples of role hierarchies. 

Each session might combine different active roles. This 
RBAC, feature supports the least-privilege principle. Auser 
belonging to several roles can invoke any subset of them 
that enables tasks to be accomplished in a session. Thus, 
a user who is a member of a powerful role can normally 
keep this role deactivated and explicitly activate it when 
needed. (All constraints are discussed in the RBAC, sub- 
section.) In the RBAC, model, the user’s discretion alone 
determines which roles are activated in a given session. 
This model also lets roles be dynamically activated and 
deactivated during a session. 

The formal definition of FBAC, follows. 

Definition 1-The RBAC, model has the following 
components: 

0 U, R, P, and S (users, roles, permissions, and sessions, 
respectively); 

0 PA c P x R, a many-to-many permission-to-role 
assignment relation; 

* UA U x  R, a many-to-many user-to-role assignment 
relation; 

* user : S + U, a function mapping each sessions, to the 
single user user(s,) (constant for the session’s life- 
time); and 

0 roles : S 3 2R, a function mapping each sessions, to a 
set of roles roles(s,) c { r  1 (user(s,), r)  E UA} (which 
can change with time) and sessions, has the permis 
sions urE roles ~ s l l { ~  I (P, rl E PA}. 

Each role would likely be assigned at least one permission, 
and each usel at least one role. The model does not require 
this, however. 

As noted earlier, RBAC, treats permissions as uninter- 
preted symbols because permissions are implementation 
and system dependent. Our framework requires that per- 
missions apply to data and resource objects and not to the 
components of RBAC itself. Permissions to modify the sets 
U, R, and P and relations PA and UA are called adminis- 

Definition 2-The RBAC, model has the following 
components: 

U, R, P, S, PA, UA, and user are unchanged from 
RBAC,; 
RH c R x R is a partial order on R called the role hier- 
archy or role dominance relation, also written as >; 
and 

Computer 



roles : S + 2R is modified from RBAC, to require 
roles(s,) c { r  1 (3 ’2  r )  [(user(s,), r’) E UA]} (which 
can change with time) and sessions, has the permis- 
sions u ~ ~ ~ ~ ~ ~ ( ~ ~ ~ { P  I (3r”Sr)[ (p ,  r”) E PA]}. 

A user can establish a session with any combination of 
roles junior to the user’s own roles. Similarly, the permis- 
sions in a session are those directly assigned to the ses- 
sion’s roles plus those assigned to junior roles. 

LIMITED INHERITANCE. Sometimes it is useful to limit 
the scope of inheritance. As an example, let’s look at the 
hierarchy of Figure 2b, where the project supervisor role 
is senior to both the test engineer and programmer roles. 
It’s entirely reasonable that test engineers might want to 
keep some permissions private to their role and prevent 
their inheritance by project supervisors. For example, 
access to incomplete work in progress, although appro- 
priate for test engineers, might not be appropriate for the 
senior role. This situation can be accommodated by defin- 
ing a new role, test engineer ’, and relating it to test engi- 
neer (see Figure 2c). The private permissions of test 
engineers can be assigned to the test engineer ‘ role. Test 
engineers are assigned to the test engineer ‘ role and 
inherit permissions from the test engineer role; these per- 
missions are also inherited upward by the project super- 
visor role. Test engineer ’ permissions, however, are not 
inherited by the project supervisor role. We call test engi- 
neer’ an example of aprivate role; Figure 2c shows a sec- 
ond example of a private role, that of programmer ’. 

Private roles are achieved in some systems by blocking 
upward inheritance of certain permissions, but this tech- 
nique prevents the hierarchy from accurately depicting per- 
mission distribution. It is preferable to introduce private 
roles and keep the hierarchical role relationship intact. 

PRIVATE SUBHIERARCHY. Figure 3 shows how a private 
role subhierarchy can be built. The hierarchy of Figure 3a 
has four taskroles, T1, T2, T3, and T4, all ofwhich inherit 
permissions from the common project-wide role P. Project 
supervisors are assigned to role S. Tasks T3 and T4 are a 
subproject with P3 as the subproject-wide role and S3 as 
the subproject supervisory role. Role T1’ in Figure 3b is a 
private role for members of task T1. Suppose the subpro- 
ject of Figure 3a comprising roles S3, T3, T4, and P3 
requires a private subhierarchy within which private per- 
missions of the project are shared without inheritance by 
S. The entire subhierarchy is replicated as shown in Figure 
3b. The permissions inheritable by S are appropriately 
assigned to S3, T3, T4, and P3, whereas the private ones 
are assigned to S3 ‘, T3 ‘, T4 ‘, and P 3  ‘, allowing their 
inheritance within the subproject only. As before, mem- 
bers of the subproject team are directly assigned to S3 ’, 
13 ’, T4 ’, or P3 ’ . The system’s private roles are clearly seen 
here; this assists in access review to determine the nature 
of the private permissions. 

Constraints model-RBAC, 
The third reference model in our framework, RBAC,, 

introduces constraints, as shown in Figure lb.  Although 
we have called our models RBAC, and RBAC,, there isn’t 
really an implied progression. Either constraints or role 

Figure 3. Role hierarchies for a project. The 
hierarchy of Figure 3a has four task roles, T I ,  72, 73, 
and T4, all of which inherit permissions from the 
common project-wide role P. Role 5 at the top of 
the hierarchy is intended for project supervisors. 
Tasks T3 and T4 are a subproject, with P3 as the sub- 
project-wide role and 53 as the subproject supervi- 
sory role. Role T I -  in Figure 3b is  a private role for 
members of task T I .  Figure 3c shows the adminis- 
trative hierarchy of the security officer (system 
administrator) role. 

hierarchies can be introduced first (indicated by the 
incomparable relation between RBAC, and RBAC, in 
Figure la).  

Constraints are an important aspect of RBAC and are 

February 1996 



sometimes argued to be the principal motivation behind 
RBAC. A common example is that of mutually disjoint 
organizational roles, such as those of purchasing manager 
and accounts payable manager. Generally, the same indi- 
vidual is not permitted to belong to both roles, because 
this creates a possibility for committing fraud. This well- 
known, time-honored principle is separation of duties. 

Constraints are a powerful mechanism for laying out 
higher level organizational policy. Once certain roles are 
declared mutually exclusive, there’s less concern about 
assigning individual users to roles. User assignment can 
be delegated and decentralized without fear of compro- 
mising the organization’s overall policy objectives. 

As long as MAC‘S management is centralized in a single 
system administrator, constraints are simply a conve- 
nience, because the same effect could be achieved bycau- 
tion on the part of the system administrator. However, if 
RBAC management is decentralized, constraints become 
a mechanism by which senior system administrators can 
restrict users’ ability to exercise administrative privileges. 
This lets the chief system administrator lay out the broad 
scope of what is acceptable and make it mandatory for 
other system administrators and users who participate in 
RBAC management. 

With respect to MAC,, constraints can apply to the UA 
and PA relations and the user and roles functions for ses- 
sions. When applied, constraints are predicates that retum 
a value of “acceptable” or “not acceptable.” 

Intuitively, constraints are better viewed according to 
their kind and nature; they can, for example, be regarded 
as sentences in a formal language. Because we discuss con- 
straints informally, the following definition reflects that. 

Definition 3--RBAC, is unchanged from MAC, 
except for requiring that there be constraints to determine 
the acceptability of various components of RBAC,. Only 
acceptable values will be permitted. 

RBAC implementation considerations generally call for 
simple constraints that can be efficiently checked and 
enforced. Fortunately, in RBAC,simple constraints can go 
a long way, and we next discuss some constraints thatwe 
feel are reasonable to implement. Because most con- 
straints applied to the user assignment relation have a 
counterpart that applies to the permission assignment 
relation, we discuss constraints on these two components 
in parallel. 

MUTUALLY EXCLUSIVE ROLES. The most common RBAC 
constraint is mutually exclusive roles. The same user can 
be assigned to at most one role in a mutually exclusive set. 
This supports separation of duties, which is further 
ensured by a mutual exclusion constraint on permission 
assignment. 

The dual constraint on permission assignment can pro- 
vide additional assurance for separation of duties but has 
received hardly any mention in the literature. This dual 
constraint requires that the same permission be assigned 
to at most one role in a mutually exclusive set. For exam- 
ple, consider two mutually exclusive roles, accounts man- 
ager and purchasing manager. Mutual exclusion in terms 
of UA specifies that one individual cannot belong to both 

roles. Mutual exclusion in terms of PA specifies that the 
same permission-to issue checks, for instance-cannot 
be assigned to both roles. Normally, such a permission 
would be assigned to the accounts manager role. The 
mutual exclusion constraint on PA would prevent the per- 
mission from being inadvertently or maliciously assigned 
to the purchasing manager role. More directly, exclusion 
constraints onPA limit the distribution of powerful per- 
missions. For example, it may not matterwhether roleA or 
role B receives signature authority for a particular account, 
but what does matter is that only one of the two roles 
receives this permission. 

More generally, various combinations of roles can be 
prohibited. For example, a user might belong to both a 
programmer role and a tester role on different projects, 
but within the same project this would be unaccept- 
able. Similarly, various combinations of permissions can 
be prohibited. 

CARDINALITY. Another user assignment constraint is a 
maximum number of members in a role. Only one person 
can fill the role of department chair; similarly, the num- 
ber of roles an individual user can belong to could also be 
limited. These are cardinalib constraints, which can be 
correspondingly applied to permission assignment to con- 
trol the distribution of powerful permissions. Minimum 
cardinaliry constraints, on the other hand, may be diffi- 
cult to implement. For example, if a role requires a mini- 
mum number of members, it would be difficult for the 
system to know if one of the members disappeared and to 
respond appropriately. 

FREREQUISrrr;: ROLES. The concept ofprerequzsite roles 
is based on competency and appropriateness, whereby a 
user can be assigned to role A only if the user already is 
assigned to roleB. For example, onlyusers who are already 
assigned to the project role can be assigned to the testing 
role in that project. The prerequisite (project) role is junior 
to the new (test) role. In practice, prerequisites between 
incomparable roles are less likely to occur. 

The dual constraint on permission assignment applies 
more at the role end of the PA relation. For consistency, 
permissionp might be assigned to a role only if that role 
already possesses permission q. For instance, in many sys- 
tems permission to read a file requires permission to read 
the directory in which the file resides. Assigning the for- 
mer permission without the latter would be incomplete. 

OTHER CONSIDERATIONS. User assignment constraints 
are effective only if suitable external discipline is main- 
tained in assigning user identifiers to human beings. If the 
same individual is assigned two or more user identifiers, 
separation and cardinality controls break down. A one-to- 
one correspondence between user identifiers and human 
beings is required. The situation with permission con- 
straints is similar. If the same operation is sanctioned by 
two different permissions, the RBAC system cannot effec- 
tively enforce cardinality and separation constraints. 

Constraints also apply to sessions and to the user and 
roles functions associated with a session. A user may 
belong to two roles but cannot be active in both at the same 
time. Other session constraints limit the number of ses- 

Computer 



Containment hierarchy Negotiated authority 
In one approach to access control management, the 

International Organization for Standardization (SO) has 
developed security-management-related standards and 
documents, described in the top-level System Management 
Overview document.’ The IS0 model is object-oriented and 
includes a hierarchy based on containment (a directory con- 
tains files and a file contains records). Roles could be inte- 
grated into the I S 0  approach. 

Propagation of access rights 
There is a long tradition of models for access rights prop- 

agation, where the right to propagate rights is controlled 
by special control rights. Among the most recent and most 
developed of these is Sandhu’s typed access matrix modeL2 
While it‘s often difficult to analyze the consequences of 
even simple rules for rights propagation, these models indi- 
cate that simple primitives can be composed to yield flexi- 
ble and expressive systems. 

To manage RBAC, Moffet and S10man3 have 
elaborate model based on role domains, owner1 
and security administrators. Authority is not CI 

delegated from a single central point, but is 
between independent managers who have or 
trust in each other. 

References 
1. ISOllEC 10040, information Technology-Open S 

connection-Systems Management Overview, In 
tion for Standardizationht’l Electrotechnical 
1992, Geneva, Switzerland. 

2. R.S. Sandhu, “The Typed Access Matrix Model 
Computer Soc. Symp. Research in Securityand Pr 
Press. Los Alamitos, Calif., Order No. 2825,1992, 

3. J.O. Moffett and M.S. Sloman, ”Delegation of P 
integrated Network Management I / ,  1. Krishnan 
mer, eds., Elsevier Science Publishers 8.V.. North-H 
pp, 595-606. 

sions auser can have active at the same time. Correspond- 
ingly, the number of sessions to which a permission is 
assigned can be limited. 

A role hierarchy can be considered a constraint in that 
a permission assigned to a junior role must also be 
assigned to all senior roles, or a user assigned to a senior 
role must also be assigned to all junior roles. In a sense, 
RBAC, is redundant and subsumed by RBAC,. However, 
the existence of role hierarchies should be recognized 
accordingly; they’re reduced to constraints only when 
redundant permission or user assignments are introduced. 
Preferably, hierarchies are supported directly rather than 
indirectly with redundant assignment. 

Consolidated model-RBAC, 
RBAC, provides both role hierarchies and constraints, 

as it combines RBACl and RBAC,. Combining both con- 
cepts raises several issues, which we explore next. 

CONSTRAINTS ON ROLE HIERARCHIES. Constraints Can 
apply to the role hierarchy itself, as indicated by the 
dashed arrow to RH in Figure Ib. The role hierarchy must 
be a partial order (a constraint intrinsic to the model). 
Additional constraints can limit the number, if any, of 
senior or junior roles that a given role may have. Two or 
more roles can also be constrained to have no common 
senior (or junior) role. Such constraints are useful where 
the authority to change the role hierarchy has been decen- 
tralized but the chief system administrator wants to 
restrict the manner in which changes are made. 

INTERACTIONS. Subtle interactions arise between con- 
straints and hierarchies. Suppose that test engineer and 
programmer roles are declared mutually exclusive in the 
context of Figure 2b. The project supervisor role violates 
this mutual exclusion constraint. Such a violation by a 
senior role may or may not be acceptable. The model 
should therefore accommodate both possibilities. 

A similar situation concerns cardinality constraints. 
Suppose that a user can be assigned to at most one role. 
Does an assignment to the test engineer role in Figure 2b 
violate this constraint? In other words, do cardinality con- 
straints apply only to direct membership, or do they also 
carry on to inherited membership? 

PRIVATE ROLES. Let’s look at Figure 2c to see how con- 
straints affect private roles. The test engineer ’, program- 
mer’, and project supervisor roles can be declared 
mutually exclusive, and because these have no common 
senior role, there’s no conflict. In general, private roles will 
not share common seniors with other roles because they 
are maximal hierarchical elements; thus, private roles can 
be mutually exclusive without causing conflict. 

A maximum cardinality constraint of zero members can 
be declared for the nonprivate roles. Test engineers must 
then be assigned to the test engineer ’ role. The test engi- 
neer role offers a way to share permissions with the pro- 
ject supervisor role. 

ISSUES IN ROLE ADMINISTRATION 
Our discussions so far have assumed that all RBAC com- 

ponents are directly controlled by a single system admin- 
istrator, yet in large systems the number of roles can 
exceed hundreds or thousands. Managing these roles and 
their interrelationships is a formidable task that is often 
highly centralized and delegated to a small team of secu- 
rity administrators. Because RBAC‘s key advantage is that 
it simplifies permission administration, the next step is to 
see how RBAC might be used to manage itself. We believe 
that the use of RBAC to aid in managing RBAC will be a 
decisive factor in RBAC‘s overall success. (For different 
views on access control management, see sidebar “Other 
approaches to managing access control.”) 

Our management model for RBAC is illustrated in 
Figure 4, where the constraints apply to all components. 
The top half of this figure is essentially the same as Figure 

February 1996 



Figure 4. Role-based access control administrative model. 

1b. Except for administrative roles and administrative per- 
missions, the bottom half of the figure mirrors the top half. 
Our intent is for administrative roles AR and administra- 
tive permissions AP to be respectively disjoint from the 
regular roles R and permissions P. The model shows that 
permissions can be assigned only to roles and that admin- 
istrative permissions can be assigned only to administra- 
tive roles; this is a built-in constraint. 

The top half of Figure 4 can range in sophistication 
across RBAC,, RBAC,, RBAC,, and RBAC,. The bottom half 
can similarly range in sophistication across AF8AC0, 
ARBAC,, ARBAC,, and ARBAC,, where the first A denotes 
administrative. Generally, the administrative model will 
be simpler than the RBAC model itself. Thus ARBAC, can 
be used to manage RBAC,, but there seems to be no point 
in using ARBAC, to manage RBAC,. 

Constraints can cut across both top and bottom halves 
of Figure 4. We have already described the built-in con- 
straint regarding administrative and regular permissions; 
however, if administrative roles are mutually exclusive 
with respect to regular roles, we will have a situation in 
which system administrators can manage RBAC but not 
use any privileges themselves. 

How will the administrative hierarchy be managed? 
Theoretically, a second-level administrative hierarchy 
could be built to manage the first-level one, and so on, but 
this is unnecessary in our opinion. The adrmnistrative hier- 
archy’s administration can be handled by a single chief 
system administrator-a reasonable arrangement for 
either a single organization or a single administrative unit 
within an organization. Our model does not directly 
address the issue of how these units interact. 

Administrative authority in RBAC is the ability to mod- 

lfy the user assignment, permission assign- 
ment, and role hierarchy relations. In a 
management model, the permissions that 
authorize these administrative operations 
must be explicitly defined 
nature of these permissions depends on 
the implementation, but they are generally 
alike. 

A major management model issue is 
how to establish the scope of the adminis- 
trative authority vested in administrative 
roles. To illustrate this, look at the hierar- 

security officer (system administrator) 

task T1. We do 
cally inherit management of the junior role 
P, so Sol’s scope can be limited to T1. 
Similarly, S02’s scope can be limited to T2. 
We’ll assume SO3 can manage the entire 
subproject (S3, T3, T4, and P3), which 
means S03’s scope is bounded byS3 at the 

top andP3 at the bottom. 
Usually, each administrative role is mapped to the sub- 

set of the role hierarchy it manages. There are, however, 
other aspects of management to be scoped-for example, 
SO1 may be able to add users only to the T1 role, while 
their removal requires the CSO to act. The permissions 
and users that the administrative role manages also need 
to be scoped, and changes in the role hierarchyitself must 
be controlled. For example, because SO3 manages the sub- 
hierarchy between S3 and P3, SO3 could be authorized to 
add additional tasks to that subproject. 

OURFAMILY OF RBAC MODELS systematically spans the spec- 
trum from simple to complex. These models provide a 
common frame of reference for related research and devel- 
opment. We’ve shown, through a management model, 
that RBAC can be used to control itself. This supports our 
position that RBAC is policy neutral rather than a model of 
a specific security policy. 

Manyresearch problems must be solved if RBAC’s poten- 
tial is to be fulfilled. One is to develop a systematic 
approach to RBAC configuration design and analysis, 
although progress has been reported.8 9 3  Because another 
problem is the lack of information about constraints with 
respect to RBAC, a constraints categorization and taxon- 
omywould be useful. Also lacking is a formal notation for 
stating and enforcing constraints, along with some mea- 
sure of enforcement difficulty. The ability to reason about 
constraints and analyze the net effect of an RBAC configu- 
ration in terms of higher level policy objectives is an impor- 
tant, open research area. The management aspects of RBAC 
need further work. Development of a systematic method- 

Computer 



ology that deals with the design and analysis of role hier- 
archies, constraints, and M A C  management in a unified 
framework is yet another challenging research goal. 

Many of these open issues and problems are intertwined 
and will require an integrated approach to be satisfactorily 
resolved. I 

Acknowledgments 
We are grateful to David Ferraiolo and Janet Cugini of 

the National Institute of Standards and Technology (NIST) 
for useful comments while this work was in progress. We 
also thank the anonymous reviewers, whose comments 
and suggestions have significantly improved the article. 
This workis funded in part by contracts 50-DKNA-4-00122 
and 50-DKNB-5-00188 from the NIST. The work of Ravi 
Sandhu is also supported by grant CCR-9503560 from the 
National Science Foundation. 

References 
1. D.F. Ferraiolo, D.M. Gilbert, and N. Lynch, “An Examination 

of Federal and Commercial Access Control Policy Needs,” Proc. 
NIST-NCSCNational Computer Security Conf. ,1993, Nat’l Inst. 
Standards and Technology, Gaithersburg, Md., pp. 107-116. 

2. Common Criteria Editorial Board, Common Criteriafor Infor- 
mation Technology Securi~Evaluation, draft, Version 1.0, Nat’l 
Inst. Standards andTechnology, Gaithersburg, Md., Jan. 1996. 

3. I. Mohammed and D.M. Dilts, “Design for Dynamic User-Role- 
Based Security; Computers & Security, 1994, Vol. 13, No. 8, 

4. R. Thomas and R.S. Sandhu, “Conceptual Foundations for a 
Model of Task-Based Authorizations,” Proc. IEEE Computer 
Security Foundations Workshop 7, IEEE Press, Piscataway, 
N.J., June 1994, pp. 66-79. 

5. R.S. Sandhu, “Lattice-Based Access Control Models,” Com- 
puter, Vol. 26, No. 11, Nov. 1993, pp. 9-19. 

6. D. Jonscher, “Extending Access Controls with Duties-Real- 
ized by Active Mechanisms,” in Database Security VI: Status 
and Prospects, B. Thuraisingham and C.E. Landwehr, eds., 
Elsevier North-Holland, 1993, pp. 91-111. 

7. D. Ferraiolo and R. Kuhn, “Role-Based Access Controls,”Proc. 
15thNIST-NCSCNat’l Computersecurity Conf., Nat’lInst. Stan- 
dards andTechnology, Gaithersburg, Md., 1992, pp. 554-563. 

8. M.-Y. Hu, S.A. Demurjian, and T.C. Ting, “User-Role Based 
Security in the ADAM Object-Oriented Design and Analyses 
Environment,” inDatabase Security VIR Status andProspects, 
J. Biskup et al., eds., Elsevier North-Holland, 1995, pp. 333- 
348. 

9. M. Nyanchama and S. Osborn, “Access Rights Administra- 
tion in Role-Based Security Systems,” in Database Security 
VIII: Status andProspects, J. Biskup et al., eds., Elsevier North- 
Holland, 1994, pp. 37-56. 

10. S.H. von Solms and I. van der Menve, “The Management of 
Computer Security Profiles Using a Role-Oriented Approach,” 
Computers & Securiq, Vol. 13, No. 8,1994, pp. 673-680. 

11. E.B. Fernandez, J. Wu, and M.H. Fernandez, “User Group 
Structures in Object-Oriented Database Authorization,” in 
Database Security VIE: Status and Prospects, J Biskup et al., 
eds., Elsevier North-Holland, 1995. 

pp. 661-671. 

Ravi S. Sandhu is professor and associate chairman of 
Information and Software Systems Engineering at George 
Mason University, Fairfax, Virginia; director of the Labora- 

tory for Information Security Technology at GMU; and a 
member of the senior staffat SETA Corporation, McLean, 
Virginia. His principal research and teaching interests are in 
information and systems security. Sandhu receivedPhD and 
MS degreesfrom Rutgers University, New Jersey, and BTech 
andMTech degreesfrom IITBombay andDelhi, India, respec- 
tively. He has consulted and extensivelypublished on com- 
puter security. Sandhu chairs ACM’s Special Interest Group 
on Security Audit and Control. 

Edward J .  Coyne is a principal scientist at SETA Corpo- 
ration where, as part of a team, he developed an RBAC 
demonstration prototype. He is an expert on computer and 
communications security and has worked on relevant 
National SecurityAgencyprograms. Previously, at the Mitre 
Corporation, Coyne supported the National Computer Secu- 
rity Center in security evaluation of commercial computer 
systems. He received a PhD in computational linguisticsfrom 
Georgetown University, Washington, D. C., in 1977; an MA in 
linguisticsfrom American University, Washington, D.C., in 
1972; and anMA inscience andpublicpolicy in 1965 and a 
BS in astronomy in 1963, bothfrom Case Institute of Tech- 
nology, Cleveland, Ohio. 

Hal  L. Feinstein is a senior telecommunications specialist 
with SETA Corporation and is experienced in all aspects of 
information security, including policy development and risk 
analysis, cryptography and communications security, and 
Defense Department trusted computersystem evaluation cri- 
teria analysis techniques. Previously, at the Mitre Corpora- 
tion, Feinstein was a member of the company’s networking 
center, where he supported the Defense Information System 
Agency’s Defense Data Network Project Management Office 
to solve protocol-level problems. Feinstein was also an eval- 
uatorfor the National SecurityAgency’s National Computer 
Security Center. He received a BS in computer sciencefrom 
State UniversityofNew YorkatPotsdam in 1974. 

Charles E. Youman has been a member of the senior tech- 
nical staffat SETA Corporation since 1991. Previously, at the 
Mitre Corporation, Youman analyzed host security require- 
ments for the Defense Department’s trusted computer system 
evaluation criteria for the worldwide Military Command and 
Control System Information System. For the Federal Bureau 
of Investigation, Youman was a certified information systems 
auditor in a project to modernize the National Crime Infor- 
mation Center. He received an MS in administration, systems 
management,from George Washington University, Washing- 
ton, D. C., in 1976 and a bachelor of engineering degree in 
information engineeringfrom Vanderbilt University, Nash- 
ville, Tennessee, in 1969. He was awarded the certified infor- 
mation systems auditor designation by the Information 
SystemsAudit and ControlAssociation in 1979. 

Readers can contactRaviSandhu at the ISSEDepartment, MS 
4A4, George Mason University, Fairfax, VA 22030; phone 
17031 993-1659, fax (703) 993-1638, e-mail sandhu@isse. 
gmu.edu. 

Howard Rubin, Computer’s software metria area editor, coor- 
dinated the review of this article and recommended itforpub- 
lication. His e-mail address is 71031.377@compuserve.com. 

February 1996 

http://gmu.edu
mailto:71031.377@compuserve.com

